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POLCOR "Lucky” Polarimeter/Coronagraph
.« @ . ®
a
' 1. Sharper images (typically 0.7 -> 0.4 arcsec without wasting frames
L

and -> 0.2-0.3 arcsec with frame selection)

2. Much higher time resolution (milliseconds, if needed)
3. Much better PSF (higher image contrast)

4. Much better coronagraphic performance

5. Much less interference fringes

6. More accurate sky subtraction

7. More accurate colour index measurements
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Contact:
Stockholm Observatory

Goran Olofsson olofsson@astro.su.se
H-G Florén floren@astro.su.se




Coronagraphy Mask Selection Wheel

There is a choice of 3 sizes (1.5, 3 and 6 arcseconds in diameter)
coronagraphic disks each size with a choice of 3 different optical
densities (2, 3.5 and 5 equivalent to 5, 8.75 and 12.5
magnitudes). The reason for not using totally opaque disks is to
allow centering and monitoring the star.

The Lyot mask is rotating in the same sense (but opposite
direction)as the field rotator in order to cancel the effect of spider
diffraction. The Lyot Stop cuts off the outer part of the aperture
opening. It improves image quality by reducing diffraction reflexes

The polarizing element is a high-quality polarizer which is
designed for the 410 — 750 nm

region). It is rapidly turned to the 4 positions (0, 45, 90 and 135
degrees) and “dark” repeatedly many cycles to average
atmospheric variations.

Filters

PolCor is equipped with Bessel U, B, V, R and I filters. In
addition very narrow-band filters (0.3-0.5 nm) are also available
for the lines Fel 386 nm, Call 393, Nal 589, KI 767, and Call
854. The purpose of these filters is observations of circumstellar
resonance scattering. The filter holder can take 2 filters at a time.

Spider Mask
Lyot Stop :4

Focusing Mech.

|

Mask Selection Wheel
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IXON EMCCD ¥ g8 288
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The detector

For low light levels it can be used in a photon counting mode (fastest full-frame readout rate 33
Hz), which is in principle noise-less, but in practice limited by clock induced pulses,

which occur typically once for 200 readouts. With broad band filters the sky emission is too
high for photon counting, but it has been found that the EM mode is linear over a wide

range and this is the normal mode of operation. In practice, all frames are stored, so the

mode of operation is a post-processing decision.

Th QE is not particularly high (around 30%) in the UV, but on the other
hand, the AR coating is efficient at longer wavelengths and we have seen no
interference fringes caused by the OH sky emission.

Very high time resolution can be achieved by limiting the readout area
of the chip, making speckle interferometry possible.
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The Spectral Response (or QE) of the CCD is governed by the ability of the
photons to be absorbed in the Depletion Region of the detector. It is only in
the depletion region that photons are converted into electronic charges and

subsequently can be held by the electric fields which form the pixel.
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Most EMCCDs utilise a Frame Transfer CCD structure shown in the diagram. Frame
Transfer CCDs feature two areas — the sensor area which captures the image and the
storage area, where the image is stored prior to read out. The storage area is normally
identical in size to the sensor area and is covered with an opaque mask, normally made of
aluminium. During an acquisition, the sensor area is exposed to light and an image is
captured — this image is then automatically shifted downwards behind the masked region of
the chip, and then read out. While this is happening the sensor area is again exposed and the

next image is acquired. The aluminium mask therefore acts like an electronic shutter. To
readout the sensor the charge is shifted out through the readout register and through the

multiplication register where amplification occurs prior to readout by the charge amplifier.

The amplification occurs in the multiplication register through the scheme
highlighted in the second digram on the right. The multiplication register
contains many hundreds of cells and the amplification process occurs in each
cell by harnessing a process which occurs naturally in CCD’s known as Clock-
Induced Charge or Spurious Charge. Clock-induced charge has traditionally
been considered a source of noise and something to minimise but not in
EMCCD’s. When clocking the charge through a register there is a very tiny
but finite probability that the charges being clocked can create additional
charges by a process known as ‘impact ionization’. Impact ionization occurs
when a charge has sufficient energy to create another electron-hole pair and
hence a free electron charge in the conduction band can create another charge.
Hence amplification occurs. To make this process viable EMCCD'’s tailor the
process in two ways. Firstly the probability of any one charge creating a
secondary electron is increased by giving the initial electron charge more
energy by clocking the charge with a higher voltage. Secondly the EMCCD is
designed with hundreds of cells in which impact ionization can occur and
although the probability of amplification or multiplication in any one cell is
small over the register of cells the probability is very high and gains of up to
thousands can be achieved.The probability of charge multiplication varies with
temperature — the lower the temperature the higher the probability and hence
gains of the EMCCD. This probability also increases with increasing voltage
applied to the multiplication register. By adjusting the temperature and voltage
applied to the sensor the EMCCD camera can achieve gains from practically
unity with voltages ~20V to thousands by applying voltages of 25-50V

depending on the sensol'

Electron
Potential

R3 R R2 R3 R1
|~ 1L s 1 ~ 1
Transfer
Diresction

n]

[s=lwiale]




| System Design
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Polarizing Mode (UCAM) @
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Lyot coronagraph principles
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Lyot Stop

Occulting Spot

The principles of how a coronagraph works are above. Light enters the telescope aperture, or pupil, as an evenly-illuminated source, blocked in this case by the secondary mirror at the center. Alens
images the light, and here where a camera or detector would usually record the image, an occulting spot, or focal plane mask, is placed instead. This spot absorbs most of the light from the center of the
field of view, so that when the pupil is reimaged by another lens any remaining light from the central source is concentrated around the edges of the telescope pupil - in this case forming rings around
the edge of the aperture image and the secondary mirror image.

The next stage of the coronagraph is the Lyot stop, which blocks out the remaining rings of light from the central star whilst allowing most of the light from surrounding sources to pass through to the
final image, created by a final lens. This technique is ideally suited to studying exoplanets and debris disks around stars, since it greatly increases the contrast in the final image: in an ideal Lyot
coronagraph only about 50% of the surrounding (exoplanet) light is removed, compared to nearly 99% of the starlight. Coronagraphy therefore makes seeing extremely dim objects very close to bright
nearby stars possible, in an ideal situation, as depicted below.

Unfortunately, the incoming light at the telescope pupil is, in practice, disturbed by atmospheric turbulence. Even in spacecraft (such as the Hubble Space Telescope) the light entering the coronagraph
will be disrupted by optical imperfections or changes in the optics due to temerature changes over time. These effects substantially degrade the coronagraph's ability to remove the starlight. For this
reason adaptive optics are required in order to effectively image exoplanets and debris disks in conjunction with a coronagraph, no matter whether the telescope is in space or on the ground.
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