STOCKHOLM HERSCHEL
OBSERVATORY SPIRE

DRCU Instrument
Simulator

Date : 2003-11-26
Issue : 1.0
Page : 1/36

o~}

Hardware
Software
User Manual

DRCU Instrument Simulator

H-G Florén

floren@astro.su.se

ver 1.5
Stockholm Observatory

Goran Olofsson
olofsson(@astro.su.se

Swigtojanska 75/4
81-389 Gdynia

Tel: +48 58 621 7920
Fax: +48 58 661 6726

e-mail: makr@icupolska.pl

ICU Polska sp. z o.0.

Source code and this document could be downloaded from
http://www.astro.su.se/~floren/download_sim.htm

mailto:makr@icupolska.pl
mailto:olofsson@astro.su.se
mailto:floren@astro.su.se

STOCKHOLM |HERSCHEL DRCU Instrument | Date : 2003-11-26
H ssue @ 1.
OBSERVATORY | SPIRE Simulator Page : 2/36

o~}

Table of contents
0.0 Introduction

0.1 Product Tree

0.2 How to Connect

1 .Hardware

1.1 General PCI board description

1.2.1Parts & References to drawings

1.2.3 Fast channels receivers (HSII)

1.2.4 Slow channels’ transmitters

1.2.5 Internal registers address decoder

1.2.6 Interrupt mask

1.2.7 Clock 20 MHz dividers

1.2.8 500 us interrupt

1.2.9 FIFO control signal generation

1.2.10 FIFO busy signals generator

1.2.11 Fast channel selection signal (H4)

1.2.12 Transmission direction selection for RS48S drivers
bus Hold description

1.2.13 Add-on bus Hold description

1.2.14 Reset

1.2.15 PCI interface description

1.3 Connectors and pin functions

1.4.1 Computer Controlled Power Consumption Simulator
1.4.2 Example

2.Software

2.1 Interaction of Driver - and Application-software
2.2 Driver software.

2.3 Application software

2.4 Transmitter:

2.5 User Manual

2.5.1 Installation:

2.5.2 Graphical User Interface (DRCU simulator)
2.5.3 How to use and Store Settings.

2.5.4 Receiver IF

2.5.5Test Examples(Current implementation)

2.6.1 Log Files

2.6.2 LogFileReader

2.7Commanding The Power consumption Load Simulator
2.8.Network connection

2.9.1How to modify application software

2.9.2 How to define new simulation functions

2.9.3 Current Implementation

/How To Define New Actions Upon Incoming Request
2.10 Trouble Shooting

3 Testing
3.1 System tests
3.2 Logic Analyser Displays

STOCKHOLM HERSCHEL
OBSERVATORY SPIRE

DRCU Instrument
Simulator

o~}

Date : 2003-11-26
Issue : 1.0
Page : 3/36

4 Simulations
4.1 SCU simulation loops

5 Examples (How to)

6A
Al
A2
A3
A4
AS
A6
A7
A8
A9
Al10
All
Al12
Al3
Al4
AlS
Al6
Al17
Al8
Al19
A20
A21
A29

ppendix

Building Blocks

PCUIF

XILINX overview

XILINX Transmit Main

XILINX Transmitter FastChannel
Transmitter IRQ Mask
Transmitter Phase

Transmitter Slow Channel Input P
Transmitter Slow Channellnput
Transmitter Slow Channel Output
Receiver Main

Receiver Fast Channel

Receiver IRQ Mask

Receiver Phase

Receiver Slow Channel Input
Receiver Slow Channel Output

In and Out drawings

Cables Pin Assignment

Cable I/F

Terminators

RS 422 definition ADM 485

Power Consumption Simulator circuit layout

STOCKHOLM HERSCHEL DRCL! Instrument
OBSERVATORY SPIRE Simulator

Date : 2003-11-26
Issue : 1.0

P| Page : 4/36

0. Introduction.

The purpose of the DRCU simulator is to replace the DRCU+FPU during
tests when the DRCU+FPU are not available. In particular this is the
case for the Herschel Oavionics' tests where it is part of the SPIRE
Avionics Model (AVM), but it is also intended for DPU I/F tests and

the OBS development.

The communication between the DPU and the DRCU, as defined in RDI,
does not conform to any standard and for this reason a communication
I/F board (called Hermes') have been developed, to mate to the PCI
bus . The driver software runs under MS WinNT and MS Win2000. As
the DRCU will react promptly to commands (by returning an echo
including 2 bits acknowledgement') the DRCU simulator must do the
same. This type of real-time performance requires a kernel' separate
form the operating system, and for this reason, the Hermes software
driver includes this feature. The simulation software, called
application' software feeds continuously the driver memory area with
HK data, status information, simulated signal data etc. In this

manner there is always a fresh' response available in the driver
memory area for a request from the DPU.

The 32 bit command word has a 12 bit wide CID (command identifier)
field and MSB=1 the command is a read (called get) command, asking
for a specific HK value or status parameter. The simulator responds

by first sending an echo (identical to the command except with a 2

bit ACK field instead of the channel No field) and then the requested
information. A command with MSB=0 in the CID field is a write (called
set) command and as for get command the immediate response is an
echo. In addition, a set command usually means some setting of the
(simulated) instrument and the application software will react to it

in a similar way as the real instrument.

In order to get an overview of the current state of the (simulated)
instrument, one form that contains all the CID entries for each of

the three (DCU, SCU and MCU) channels is coupled to the simulation
program. The forms(windows) are updated in accordance with new
set commands..

The most demanding task for the simulation program is to deliver
detector and mechanism data frames at the required speed, and
according to the requirements (RD?2) it produces a simulation of a
celestial source modulated by the BSM in the photometer mode and an
interferogram in phase with the SMEC.

Although the simulator normally will be controlled by commands from
the DPU, it is also possible to insert parameters directly by means

of'a GUI. This tool also displays the current status and activity of

the simulator. By using the network connection the simulator can be
used remotely with the same GUI.

STOCKHOLM |HERSCHEL DRCU Instrument | Date : 2003-11-26
H ssue @ 1.
OBSERVATORY | SPIRE Simulator Page : 5/36

o~}

All information transmitted by the DRCU simulator is saved to disk in
datalog files. The growth rate of these obviously depends on the mode
of operation, but the disk space will in normal running modes allow
several days of continuous operation.

In order to simulate the power consumption of the DRCU+FPU, a
separate power drain unit has been constructed. This unit is

controlled by the simulator PC via a RS232 connection and allows e.g.
simulation of the power-up sequence and failure modes.

In order to test and run the Hermes communication (including cables

that are part of the DRCU simulator package), a DPU simulator! has
been developed that also consists of a PC with a Hermes board. This
Hermes board is configured in receiver mode for the fast channels and
GUI of the application program allows sending of commands, monitoring
of signals etc.

DRCU / DPU unit interface

DRCU unit
Standard PC
Application Win

2000/NT GUI

\ —

Driver (low level

logic)
A 3xSlow Channels
Hermes <@ Bidirect. 332KHz »{ DPU unit
PCI Card
| 3xFast Channels '»
one direct 1 Mbit/s

Electrical I/F format complies with the DRCU/DPU unit SPIRE-SAP_PRJ-001324 (2) description

STOCKHOLM
OBSERVATORY

HERSCHEL DRCU Instrument |Date: 2003-11-26
H Issue : 1.0
SPIRE Simulator P| Page : 636

0.1 DRCU Simulator Product Tree

HS-DSIM DRCU Simulator
HS-DSIMx-100 CPU Box
HS-DSIMx-200 CPU Power Cable
HS-DSIMx-300 Keyboard
HS-DSIMx-400 Mouse
HS-DSIMx-500 Monitor
HS-DSIMx-600 MonitorPower Cable
HS-DSIMx-700 DPU I/F Cables

HS-DSIMx-700-01

Cable I/F to PCI card (mounted)

Hermes Interface

HS-DSIMx-700-02 Cable CH1
HS-DSIMx-700-03 Cable CH2
HS-DSIMx-700-04 Cable CH3

HS-DSIMx-800

Power Consumption Simulator

HS-DSIMx-900

PCS Cable

HS_DSIMx 700 cables are symmetric. Red or green is arbitrary.

STOCKHOLM
OBSERVATORY

HERSCHEL
SPIRE

DRCU Instrument |Date:2003-11-26
Simulator Issue : 1.0

o~}

Page : 7/36

0.2 Interfacing DRCU Simulator and DPU

How to connect

DPU -Box

JO7

CH1

JO8 J09

HS-DSIMx-700-02

HS-DSIMx-700-03

PCS (HS-DSIMx-800)

RS 232

u]

CPU-BOX (HS-DSIMx-100)

HS-DSIMx-700-04

Com

1or2

HS-DSIMx-700-01

C(—Tl CH2 CH3

STOCKHOLM HERSCHEL DRCU Instrument | Date : 2003-11-26
OBSERVATORY | SPIRE Slmulator (o 836
1 Hardware
1.1 General PCI board description
Main parts
XILINX SPARTAN
XCS30
FPGA

20 MHz
Clock

http://www.xilinx.com/

| ok our

AaAMCC
PCI MATCHMAKER
559200

0106 A027

A TATWAN

ADM 485
EIA RS-48S Standard
Analog Devices

Appendix A17-A25

PCI MATCHMAKER CARD
S59200 0106 A027

AMCC
www.amcc.com/

Memory

SN74
ACT7882-20FN
2048*18
Clocked FIFO
[Texas

7 Instrument
www.ti.com]

STOCKHOLM HERSCHEL DRCU Instrument | Date : 2003-11-26
Simulator Issue : 1.0
OBSERVATORY | SPIRE P| Page : 9/ 36
1.2.1 Building Blocks
PCI XILINX IN OUT
PCIl Xilinx INOUT
PCLSCH Xilinx sch INOUT.SCH
DO31.0] <o DQ[31..0] INHI1 INHI
INSTRI INSTRI
ADCLK 20MHz OUTHI1 OUTHI
SYSRST# [SYSRESH# OUTSTRI [OUTSTRI1
DXFRY = DXFR INH2 INH2
PTATNE [PTATN# INSTR2 INSTR2
PTADR# PTADR# OUTH2 OUTH2
PTWR PTWR QUTSTR2 [OUTSTR2
WAIT# WAITH INH3 INH3
ADDINT# ADDINT# INSTRS INSTRS
OUTH3 [OUTH3
MD[7.0] <> > MD[7.0] QUTSTR3 OUTSTR3
INL1 <]] INL1
INL2 <] INL2
N3 T INL3
OUTLI OUTLI
OUTL2 [OUTL2
OUTLS [OUTL3
CLKIN CLKIN
CLKOUT [CLKOUT
DIR [DIR

The detailed logical description of the blocks could be found in appendix (A)
PCI A2

XILINX A3-A15
IN and OUT A17

Xilinx XCS30TQ144 contains all the digital parts of Hermes transmitter and receiver boards besides the PCI
interface which is based on AMCC S5920Q Matchmaker IC. Design of both transmitter and receiver is described
below.

1.2.2 Parts & References to drawings

1. The receiver can be divided into the following functional blocks:

STOCKHOLM HERSCHEL DRCU Instrument |Date: 2003-11-26

: Issue : 1.0
OBSERVATORY | SPIRE Simulator Page : 10/ 36

o~}

A detailed logic layout could be found in the Appendix. (1-16)-use the search function in the appendix section
to locate the ()- parts and if needed the zoom function if needed.

e fast channels receivers (H1 .. H3)

e slow channels transmitters (T1 .. T3)

* slow channels receivers (R1 .. R3)

e internal registers address decoder (L8, 156)

e interrupt mask register (U1, 125, 126, 157)

* 20 MHz clock dividers

* 500 us interrupt generator (U3, 1150, 1151)

* FIFO control signals generation (188, 189, 190)
* FIFO busy signals generation (1142, 1143, 1144)
» fast channel selection circuit (H4)

e RS485 direction definition (I83)

¢ Add-On bus Hold (175)

* Reset

An external 20 MHz creates a basic clock for all receiver parts. Transmission CLKOUT 312,5 kHz, LED 1,5 Hz
are generated by dividing 20 MHz. It is distributed by one of BUFGP lines to guarantee small delays. PTADR,
DXFR and 1 MHz CLKIN from transmitter are also distributed using BUFGP lines. PTWR, CLKOUT, RD1 and
CLKIN are distributed using secondary BUFGS buffers.

1.2.3 Fast channels receivers (HSII)

Serial channel input data are converted to a word in L14 module. Consecutive word bits are registered on rising
edge of 1 MHz clock while frame FR is active. Parallel data are latched in L16 by a rising edge of 20MHz clock
when LATCH_EN is active. LATCH_EN is generated by 1162, 1163, 1550 and is active for half of CLKH period
after FR goes low. The word received is written to FIFO by signals generated in 1471, 1487, 1488 and 1490. Write
begins when both LATCH_FULL and channel selection Q are high. WRITE signal is generated and fed to [488. If
Add-On bus is free (DXFR and PTATN are high) WAIT is generated forcing third state on S5920 outputs. On the
next 20MHz cykle FIFO write enable (WEN) is generated. The next 20 MHZ clock generates CLR that resets the
circuit. Simultaneously WAIT opens L15 buffer and the data received are presented on P[15:0] bus. Fast channel
receiver can generate three interrupts IRQ1, IRQ2, IRQ3. IRQ1 is generated on FR transition from high to low,
IRQ2 on break between frames longer than 1 CLKH period, IRQ3 on FIFO’s AF (almost full) transistion from 1
to 0. The interrupts are cleared by CLR _IRQ generated by 1132 from DXFR, PTWR, EN (Add-On write to a
given fast channel).

1.2.4 Slow channels’ transmitters

After 32 bit word is written to a slow channel CLK_EN is generated and the data are latched in L16.
Simultaneously START is generated starting 32 CLKL periods long FR frame. 1163 register synchronises CLKL
to START and additionally generates RDY, that together with FR defines the moment when data are written
(LOAD) to shift registers module L17. L10 modul generates CLR after 32 CLKL periods are counted. CLR clears
FR. The word written to L17 is transmitted through SER serial output starting from MSB. When FR goes low |
interrupt is generated. This interrupt is cleared by the appropriate channel read operation (CLR_IRQ from 1160).

Change from 0 to 1 on S serial input results in FR changing from 0 to 1 and starts L11 counter counting 32 CLKL
cycles. Simultaneously CLKL pulses write word bits to L10 shift register. The word is then presented on
DOJ[31:0] bus. After 32 CLKL pulses 1147 register resets (FR=0). Falling FR edge is detected in 1141, 1142
registers and CLK EN is generated. CLK EN enables word write to L12. Rising CLK EN produces LATCH_EN

STOCKHOLM |HERSCHEL DRCU Instrument | Date : 2003-11-26
H ssue : 1.
OBSERVATORY | SPIRE Simulator Page : 11/36

o~}

and I interrupt. I interrupt is cleared by write to appropriate slow channel (CLR_IRQ from 1144). The word
received is presented on P[31:0] bus when the appropriate channel is selected (EN).

1.2.5 Internal registers address decoder

Address from Add-On bus is transmitted to BUSIN[31:0] and latched in L8 module by rising edge of PTADR. It
is then transmitted over A[3:0] to I56 address decoder.

1.2.6 Interrupt mask

Interrupts generated by the modules are connected to internal bus DQ[15:0] transmitting them to U1. Module U1
contains 16 registers (L10) where a present interrupt mask is stored. There are also 16 AND gates masking the
interrupts for which a mask bit is equal to 0. The result is presented on O[15:0]. The interrupt mask can be
changed by writing a new value to IRQ_MASK address. After reset the mask has a value of 0x00. O[15:0] bus is
buffered by L4 buffer. L4 is opened when read of interrupt vector occured. All the interrupt lines are also added
by 126, 157 and 125 to create ADDINT.

1.2.7 Clock 20 MHz dividers

20 MHz external clock (generated by quartz oscillator installed on Hermes) is divided by 64 with a duty factor of
50% (L7) to produce 312,5 kHz clock. This signal is then buffered by BUFGS (for fast propagation in Xilinx) and
creates receivers CLKOUT (being the transmission clock for slow channels). CLKOUT is divided by 200000 in
L2 with a duty factor of 50% and provides approx. 1.5 Hz signal to control on board LED.

1.2.8 500 us interrupt

CLKIN (1MHz fast channel transmission clock coming from transmitter) is divided by 500 in U3 with a duty
factor of 1/500. It is then synchronised by I151 and fed to line 15 of DO[15:0] bus. 500 us interrupt is cleared by
Add-On write to INT_TICK address.

1.2.9 FIFO control signals generation

FIFOs’ read signals REN1, REN2, REN3 are generated by 188, 189, 190 when Add-On read from H1, H2 or H3
address occurs.

1.2.10 FIFO busy signals generation

When a 16 bit value is read from FIFO there are OR1, OR2 or OR3 signals presented on Add-On bits 16, 17 and
18 respectively. They are used to confirm that the value read is valid.

1.2.11 Fast channel selection signal (H4)

STOCKHOLM |HERSCHEL DRCU Instrument | Date : 2003-11-26
H ssue : 1.
OBSERVATORY | SPIRE Simulator Page : 12/ 36

o~}

It is used to select three fast channels in a cycle one after the other to assure conflict free received data writing to
one of FIFOs. Every of Q1, Q2, Q3 is active for 3 uS.

1.2.12 Transmission direction selection for RS485 drivers

Logical 1 is fed from I85 gate to pin P75 of Xilinx. It is defining the level on RS485 drivers (ADM485) direction
pin [M1].

1.2.13 Add-On bus Hold

WAIT signals from fast channels are added by 175 and fed to Xilinx pin P4, which in turn is connected to WAIT
input of S5920. Active WAIT sets S5920 in high impedance state. The bus can be then used by Xilinx — FIFO
transfers.

1.2.14 Reset

A standard STARTUP module from Xilinx library is used. S5920 SYSRES (program reset) pin is connected to
STARTUP GSR input through P116 pin.

1.2.15 PCI interface description
PClI interface is based on AMCC S5920Q PCI Matchmaker IC. Its detailed description is available from AMCC.

S5920Q is working in active mode. It has a standard connection with the PCI bus. Its operation is defined by
configuration record written to 24C02 I*C EEPROM. This configuration record is uploaded by S5920Q
automatically upon its power up. This record contains information about resources (I/O region and IRQ number)
used by the board and the board descriptor.

1.3 Connectors and pin functions

Appendix p17 Pin Out Cables
Appendix -p18 Cables I/F drawings
Appendix p19 Terminators

1.4.1 Computer Controlled Power Consumption Simulator

Users Guide

Computer Controlled Power Supply Load (CCPSL Appendix p29) is a variable PS load that can be used to
simulate changes in power consumption for 28 V power supply. It works in the range from 0.84 W up to 120 W.

Fuse F 6.3A LED

STOCKHOLM |HERSCHEL DRCU Instrument | Date : 2003-11-26

H ssue @ 1.
OBSERVATORY | SPIRE Simulator 1336
CCPSL front case

The front of CCPSL case is shown above. There are two DEMA9 connectors marked ,,Load” (DEMA9P) and
“RS232” (DEMAO9S), fuse holder and LED on the it.

The power supply output should be connected to “Load” input with positive voltage connected to pins 2 and 7 and
ground connected to pins 4 and 8. There is fast 6.3A fuse installed in serial with “Load” input to protect the load
against overcurrent in case of failure.

CCPSL acts as a regulated current load. The current value is set by a controlling computer through RS232 (serial)
interface. The interface is optoisolated and requires small amount of power from the computer. The supply voltage
is taken from RTS line which must be active for the interface to operate correctly (+12V). It is therefore necessary
to set flow control for the designated serial port to RTS/CTS.

Transmission parameters are set to 2400 bauds, 8 data bits, no parity control and one stop bit (2400, 8, N, 1).

All the internal CCPSL electronics is supplied from “Load” input. Therefore there is always certain minimal
current taken from the PS under test. This current is equal to 30 mA.

To set a given current value the user has to send two bytes to CCPSL:

X — current value

0x21 (ASCII code of “!”)

The maximum current value tha can be set is adjusted to 4 250 mA. If we add 4 250 mA and a constant supplying
current of 30 mA we will have the maximum current that can be set equal to 4 280 mA which gives a maximum
power of 119.84 W for voltage of 28V.

A single bit weight is equal to 16.60 mA (0.465 W). The minimum current of 30 mA gives a minimum load of
0.84 W.

1.4.2 Example:

To set power to 45 W user has to send:
(45 W —0.84 W)/0.465 W = 95 (0x5F)

User can also read the real current and voltage values by sending 0x3F (ASCII “?”’) to CCPSL. CCPSL will
answer with two bytes representing voltage and current

X, Y

To calculate voltage and current the following equations should be used:

U[V]=X*0.129 + 0.45

I[A]=Y /60 +0.03

Example:

The answer 0xDA 0x5C means 28.6 V and 1.56 A.

The LED mounted above RS232 connector signals current consumption ranges
green — [=0

orange —0<I<3 A

red-1>3 A

RS232 cable is “one to one” (i.e. pin 1 connected to pin 1 and so on) DEMA9P to DEMA9S. However only four
lines (TxD, RxD, RTS and GND) are used.

STOCKHOLM |HERSCHEL DRCU Instrument | Date : 2003-11-26
H ssue : 1.
OBSERVATORY | SPIRE Simulator Page : 14/36

o~}

2 Software

2.1Interaction of Driver Software and Application program.

The programming logic is divided between the application programme and the driver.

The driver manage very fast response independent of the operating system drawback. The application
software provides a GUI for interactive operation. The division of tasks between the two levels are as
follows

I
I
|
Application : Driver Logic
software |
OS Windows NT /2000 :
|
I
Simulation : ‘ .
Loops | Get 32-bit GET ECHO inc ACK ‘
Borl . | Buffers
orian | 32-bit
| / response < GET
)I/ word Command word
: Status
| Buffer
I ACK
I
I — Fast Channel
' Set Block transfer
: Buffers » 0-2
' DataBlocks
Common memory
1.Length
2 Number Of Blocks
4— 3.TimeGap SET
4. RunCID
T
| v
: 32-bit SET ECHO inc. ACK >
I
I

The application software generates simulation data. The data in the driver is constantly
refreshed

If all settings are done (defined by a series of set commands) the driver has information
about a trigger command to initiate transfer-“RunCID”.

The driver and application share some information through a common memory
containing information about block size, number of blocks, time gap between blocks and
start transfer command allowing the driver to start sending

The start command will then activate a driver response with the current settings without

STOCKHOLM HERSCHEL DRCU Instrument |Date: 2003-11-26

: Issue : 1.0
OBSERVATORY | SPIRE Simulator Page : 15/ 36

o~}

having to enter the application software New blocks are shifted to the driver from the
simulation loop as the transfer progresses.

2.2 Driver software.

Development tools: Visual c++ (Microsoft) http:/www.microsoft.com
Driver Studio 2.0 and SoftICE DriverStudi(Compuware Corporation)
(http://www.microway.com.au/catalog/listcpp_addons.htm)

Driver start-up

The board driver (hermes.sys) is loaded during Windows NT startup. This driver is uploading the Xilinx
definition file (defining its internal structure) using S5920Q mailbox MDO0 and MD1 bits.

After the Xilinx definition file is uploaded, S5920Q communicates with registers created in Xilinx structure
using 32 bit data DQ bus and control signals ADCLK, DXFR#, PTATN#, PTADR#, PTWR and IRQ#. The
communication between S5920Q and Xilinx XCS30 does not use any wait states.

2.3 Application software

Development tool: Borland C++ Builder.5.0

The Application software is referred to as transmitter and receiver.
The transmitter is the simulator (DRCU) and the receiver (DPU) making it possible to test
setup.

In the application programme (transmitter) the simulation functions will be implemented

http://www.microway.com.au/catalog/listcpp_addons.htm
http://www.microsoft.com/

STOCKHOLM HERSCHEL DRCU Instrument | Date : 2003-11-26
Simulator Issue : 1.0
OBSERVATORY SPIRE P| Page : 16/ 36
2.4 Transmitter:
Main units in application software(detailed listing in appendix)
Forml Main Window
BitFunc Unit containing some simple bit conversion function
Driver Open the Driver
Function Place To Define New Simulation Functions (Data for fast channels will be generated here)
LogFiles Log File storage
Request Incoming requests that the simulator should react on
Settings of transfer specifics
Transmit Main wrapper file for application execution

Form2 & Unit2 Database handeling

UpdateF Transfer to Driver Buffer of Fast Channel response data

DeviceloControl(Drv, CHANGE FAST. pb, len, NULL, 0, &u, NULL):; // send it !

UpdateS Transfer to Driver of Slow Channel Response data.
DeviceloControl(Form1->Drv->hDrv, WRITE SLOW, &LS Par, sizeof(LS Par), NULL. 0, &i. NULL);//send
it !

Only Demo and test modes will not be used (currently not active)

UpDataDisplay A Thread to display detector data (will not be used)
Form3 & Unit3 Display of Detector readout.

The project also contains a file Common.h that serve as a link between application and driver.
Common.h Link between application and driver.

#ifndef Common
#define Common__

#include "Typedef.h"
#define HermesVer "Hermes 3.3"

#define LOAD XILINX 0x00222000
#define RESET XILINX 0x00222004
#define CREATE HOOK 0x00222008

#define READ_SLOW 0x0022200C

#define WRITE_SLOW 0x00222010 Format Definition

#define CHANGE_FAST 0x00222014 Note that the two

#define FLUSH_FIFO 0x00222018 First bits GG are

#define READ_LOG 0x0022201C used internally to
DefineAck bits

// CCAA TII IIII IIII PPPP PPPP PPPP PPPP --- drv -> appl For get commands

// GGSS xIII I I1II PPPP PPPP PPPP PPPP --- appl -> drv

// CC - channel number
/I SS - acknowledge bits for SET command

STOCKHOLM |HERSCHEL DRCU Instrument | Date : 2003-11-26
H ssue : 1.
OBSERVATORY | SPIRE Simulator 17736

/I GG - acknowledge bits for GET command
/I PPPP PPPP PPPP PPPP - parameter

#define GET MASK 0xC0000000
#define SET_MASK 0x30000000
#define PAR_ MASK 0x0000FFFF

#define CHN_ID(p) ((UCHAR)(((p)&GET_MASK) >> 30))
#define ACK_ID(p) ((UCHAR)(((p)&SET_MASK) >> 28))
#define CMD _ID(p) ((USHORT)(((p)&0x0FFF0000) >> 16))
#define CMD_NR(p)
#define CMD_SG(p) ((UCHAR)(((p)&0x08000000) ? 0x01 : 0x00))
#define PAR ID(p) ((USHORT)((p)&PAR_MASK))

#define CH 3
// number of channels

((USHORT)(((p)&0x07FF0000) >> 16))

Range definitions

#define MIN_LEN 5 // min frame length
#define MAX FN 16
// max number of functions for one channel
#define MAX DAT 1023
of words in single block
#define MAX LS 2048

of SET/GET parameters
#define MAX REQ 200
#define MAX BLK 200

typedef struct BLOCK
{
USHORT
// number of data words
USHORT
} BLOCK;

// max size queue of requests
// max size queue of blocks

Length;

DatalMAX_DAT];

// Frame ID - stored in Data[0]
// Time words and CRC stored in Data table (various positions)

typedef struct FAST O
{

// single block forma;

// max number

// max number

Block
Definition

// one extra word for CRC

// application --> driver

USHORT Channel,
USHORT Loop;
USHORT

USHORT RunCid;
BLOCK

// block

} FAST O;

typedef struct FAST 1

{
USHORT Channel,
BLOCK

// block

} FAST I;

typedef struct LS PAR
{

BlkNum;

// which channel
// loop mode active
// number of blocks

// command "start block transfer"
Block;

// application <-- driver

// which channel

Block;

// parameters for slow channels

ULONG Data[CH][MAX_LS]; // mixed ACKs/PARAM words

} LS PAR;

typedef struct LS ONE

{
USHORT

Channel;

«—

FAST OUT
Definition

+ Block struct

// GET CMD for channels

// which channel

STOCKHOLM HERSCHEL DRCU Instrument |Date: 2003-11-26
F Issue : 1.0
OBSERVATORY | SPIRE Simulator o 18/36
USHORT Idx; // index of ACK/PARAM word

ULONG Param;
} LS ONE;

typedef struct CHANGE
{
ULONG

ULONG

// mixed ACK/PARAM word to change

// single transaction for slow channel

In;
// incomming word
Out;

// outgoing word

LONGLONG Stamp;

// time stamp
} CHANGE;

#endif // __Common

HERSCHEL
SPIRE

STOCKHOLM
OBSERVATORY

DRCU Instrument
Simulator

~

Date : 2003-11-26
Issue : 1.0
Page : 19/36

2.5 User Manual

id

Hermes.sys Hermes.reg

2.5.1 Installation:

A. The driver Hermes.sys should be put c:\ winNT\system32 \drivers

B. Folder TransmittPhase3 2002-12-09 contains source files and the (Hermes.reg i double click

on it to registrer file).
C: Create a directory “C:\LogFiles”
D. Reboot computer

E. Start Transmitter (Start Receiver)

2.5.2 Graphical User Interface (DRCU simulator)

BlockLength

RUIN CMD

leermes 5.1 Updated 2003-11-26 No LogFiles Mo DataBas:

TimeGap[ms]

Settings
Si i} Il Mode
— Regword CH CMD PaR e ¥ DetectarDisplay
DEC[™
[={ulu}u]ululu]n] 0 oooo oooo
5430004 0 043C 0004 3 Channel 0) o [o
543C0004 O 043C 0004 S C I— X pos ¥ pos
543C0004 0 043C 0004 & ¥ Loop 1086 noz
543C0004 0 043C 0004 & SignalA Expl-Cos"2+y™
gnal #p[-C[x"2+y"2])
543C0000 O 043C 0000 S [2a 1 [1o) T = i s il
Rand=p 500
— Channel 1 I m I =
ean tdev
Clom [ass [o] [EMEC FramelD-0wi0 =]
[z [t [|[skmewore =] [Ees
ID Trajectary gen. is stopped j
i~ Channel 2
OFF | |Scan Stopped =
¥ Loop 130 ID 'I I J I J
[3 Hesatﬂeqtnunterl SCU Normal jv
[Ces [o Show |~ Log Cloar | ISD Il |12 |Dpen [E¥HSHEAT B] IClused [SPHSHEAT B
03 K [Homal 17 K

TransferChannelS ettingsT oDiriver |

CE¥Temp
HS

CPHPTemp

Display Window

S=set command

ScanTime+/- [ms] IU

G=get command
R=run command
(transfer starts)

t_forw
trew

FrRate10
FrRate12

ResetTimer | IV CHD=3

SMECPosition ID
IStatus

T J
o .
ID 0

ID TimeGap FrameR atia

STOCKHOLM HERSCHEL DRCU Instrument |Date: 2003-11-26

: Issue : 1.0
OBSERVATORY | SPIRE Simulator Page : 20/ 36

o~}

Transmitter Graphical User Interface

The different modes could be defined in the graphical I/F. If you select the predefined modes
in the comboboxes the settings will change block size etc for that specific channel.

If you want to test a certain combination enter values manually and click TransferSettings to
file.(you should always finish with this update if you do changes in the boxes. It is also
possible to change the “modes” by sending the appropriate command and parameter
combination (see receiver side instruction below)

The sim function selector references the definitions in the function unit (how to redefine
function see section XxxX)

The received command box will show if there is a set =s command or get=g comand. If the

command is the same as in the RUN CID box it is also considered a RUN =R command.
(the start command known to the driver that will start transfer.

2.5.3 How to use and Store Settings.

The set parameters are send to the simulator there they are stored and displayed.
Three separate windows are defined for each channel. CHO,CH1,CH2
(use SETTINGS|CHO orCH1 or CH2 to store and modify values)

SETCMD | ——pp| Switch Show settings

defines In GUI
] b CHO,CH1,CH2

Runtime var

Make GUI changes
Active (transfer to run-time
I =TT
123 3
CHO SET/GET [2 N P 3 G Al X T R REERE RE KT RE REARE RE T 31 B2 e P P P PR EE ER IR ¢
SetPhotoBiasMode |7 LIAP 1056 15 15 15 15 15 15 15 15 15 15 15 15 15 1515 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
SetPhotoBiasAmplSW |5 1057 | 14515 15 15 15 15 15 15 15 15 15 15 15 15 1515 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 [z
oot [| T R T B P B =
SetPhotoBiasAmplLw 3
AR el ;55 1060 115151515 1515 15 1515 1515 15 1515 151515 16,15 151515 16,15 151515 16 15 151515 _S2AlLlapllas To | 18
1061 15 15 15 15 15 15 15 15 15 15 15 15 15 15 1515 1515 15 15 15 15 15 15 15 15 15 15 15 15 15 15 Get settings
1062 | 14515 15 15 15 15 15 15 15 15 15 15 15 15 1515 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 g
SRllFERAENSS | 1063 | 1451515151515 151515151516 1515 11516 151515151515 15151516 1615151515 ¢ Lnadﬂld!‘:atlingﬂ- To GUI from
SetPhSWilelVS52 (355 1064 | 1451515 15 15 15 15 15 15 15 15 15 15 15 1515 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
SetPhSwllelV353 [o55 LIAS 1068 1515151515 151515151515 1515 15 151515151515 15151515 151515 1515151515 StoreCurentSettings--> file
SetPhSWilelVS54 (355 1069 | 14515 15 15 15 15 15 15 15 15 15 15 15 15 1515 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
SetPhSWilelVSS5 [o55 1070 | 1451515151515 15 15 15 15 15 15 15 15 1515 1515 15 15 15 15 15 15 15 15 15 15 15 15 15 15
SetPhSW.fetYSS6 255 |
SelPhMwJfetyS51 [755 SetPhMLW. fetPwr ,T SetTCIfet¥S51 [SetSpectioBlasMode] Store
SetPhMwWIfetyS52 [oq5 SetPhotoBlasDiv | SetSpectroBiasAmplSW | .
SelPhMWJIeVSS3 (oo PMs JFET I‘yé;; SetPhotBiasFreq [SetSpectoBiasAmplLW [Settings to file
SetPhMwWifetyS54 [oq5 PLW JFET Tl SetPhotoDemodSW [SetSpectroHeaterBias |
T JFET 5 SetPhotoDemodMW [SetSpLwW.llet¥Ss 0
SetPhLwJfetySS1 255 = SetPhotoDemodLW [SetSpSwifety551 0
SelPhLWlfety552 ,T SetPhotoDemodTC [SetSpSwlfety552 0
SetPhotoHeaterBias [4 SelDataMode [g:x_j:zgl; v SetSpSLW.fetPwr
SetNoOfFrames | - [7
SetStartFrame | SRLIAT [
SetPRSWJFfetPwr [c3 S TR
123456 SetSpectroBiasFieq 0
SetPhSWilFfetPwr [F [V [V [V ¥ [SetSpectroDemodSW |
SetSpectroDemodlLW |

You are free to make changes in the GUI. After pressing “TransferGUIchangesToDriver”

STOCKHOLM |HERSCHEL DRCU Instrument | Date : 2003-11-26
H ssue : 1.
OBSERVATORY | SPIRE Simulator Page : 21/ 36

o~}

The settings become active in the simulation loop. Note Settings files are generated separately
for each channel. The settings are not automatically stored you have to do that by pressing
StoreCurrentSettings->

2.5.4“Receiver” I/F (DPU) software used for testing the “simulator side”

Comman ding the simulato] Channel To Send On 0-2 Command Number Parameter

Ij_‘hHermes 3.3 BReceiver
— Yiewer Mequest editor

REQUEST ANSWEER I l
u] SET IIDEH IEI
WORD C T CID FAR WORD C i CID FPARL M u

looocdocdo O 1 000 0000
[~ XOR DEC[™

ﬂ Last =sent

043C0000
043C0004
88FzZ0024
S3E000ZA
GED300z A
88800024
S3BFO0ZA
g55100z 4
8820024
B8O08Z00Z 4
g585300zZ 4
50830024
49060024

(@l el [Self Clear /[v Show Clear Now | ‘ 49DBEODZ A

Make sure the same cheksum
is selected on both sides

Hex or
Select channel 0,1,2 Decimal
Enter command number Display

Enter parameter value
Press Send Now

AW N -

STOCKHOLM |HERSCHEL DRCU Instrument | Date : 2003-11-26
H ssue : 1.
OBSERVATORY | SPIRE Simulator Page : 22/ 36

o~}

2.6.1 Log Files

Logfiles are stored in directory c¢:\LogFiles Remenber to clear that directory if disk-space become crucial.
In Hermes phase 3 software the driver and ,,Transmit.exe” were modified. All the data received or sent by
transmitter are written to files.

If Transmitter program is started it creates in the (c:\LogFiles) four files with the following names:

»HHMMSSs.log” - a common file for all slow channels,
»HHMMSS{0.log” - file for channel 0,
»HHMMSSf1.log” - file for channel 1,
»HHMMSS{2.log” - file for channel 2.

where HH is the current hour, MM minutes, SS seconds.

1. Slow channels
The following changes were implemented in the driver and transmitter application to log the data:

- added ,,DeviceloControl” function named READ LOG,
- write to a file was added to receiving thread (,,Request”).

READ LOG function operates similarly to READ SLOW function that was already used in
previous versions of software. There is however a small difference between the two functions.
In READ_SLOW a queue of single words was read. In READ LOG a queue of CHANGE
structures defined in ,,common.h” is read. Every structure consisits of the following fields

-ULONG In - arequest received from ,,Receiver.exe”
- ULONG Out - an answer sent to ,,Receiver.exe”
- LONGLONG Stamp - ,time stamp” (FILETIME structure)

All the structures read are written one after the other to ,, HHMMSSs.log” file.

The size of file is equal to:

Size = number of words received * sizeof(CHANGE) = number of words received * 16

2. Fast channels

Blocks of data to be sent are additionally stored in COPY _F structure (defined in ,,UpdateF.h”)
in every thread preparing data for fast channels (,,UpdateF”). The COPY _F structure is
complemented with time stamp. The structure consists of:

- LONGLONG Stamp - time stamp (FILETIME structure)
- FAST O Data - data block (variable length!)

CHANGE FAST function was modified. Now the driver informs the application that a given
block of data was used i.e. transmitted through a fast channel. If it happens, its copy is written
to an appropriate ,, HHMMSSf?.log” file.

STOCKHOLM
OBSERVATORY

HERSCHEL
SPIRE

Date : 2003-11-26
Issue : 1.0
Page : 23 /36

DRCU Instrument
Simulator

o~}

For every transmission the length of a file is increased per:

Size = number_of blocks sent * (number of data in_the block + 11) * 2

Remarks

You may use FileTimeToSystemTime (Windows SDK) function to use time stamp.

After ,,LOG” checkbox is pressed present *./og files are closed and new ones are created.
Data are written to files by unsynchronised threads and the data may be corrupted if you
use the ,,LOG” checkbox during the active fast channel transmission.

2.6.2 Log file Reader

A preliminary file reader is available to view contents Developed in C++ builder.

Reader 2003-02-06

| i oadAiEieE astihanneiBiock s(f) |

Mumber Of ¥alues
|292

D ataPoints

IE?3|] BlockslLoaded

LoadMumberQOfBlocksF astChannels
|1 Mo of Blocks To Load

LoadAlISlowChannelBlocks |

||] Blocksloaded

LoadSlowChannelBlocks [£] |
|1 Mo of Blocks To Load

=101 |

Clear ListBox

========= BLOCK No=1
YEAR=2003
MONTH=1

DAY=28

HOUR=9

MILLISECOND=
CH=0

LOOP On/OFff=1
Mo of Blocks=1
CID=43
BlockLength=294
MILLISECONDS ==

53
170
43
a0
254
73
53
170

32631888

FileSize([bitz)

Load either
All blocks
Or a certain
number of
blocks from
BEOF

[
IEuf found

2.7Commanding The Power consumption Load Simulator

We have constructed simple commanding I/F based on C++ builder and Asynch professional
(www.turbopower.com) plug in software is used for the serial communication. It could be integrated with the

application programme.

2.8.Network connection

http://www.turbopower.com/

STOCKHOLM |HERSCHEL DRCU Instrument | Date : 2003-11-26
H ssue : 1.
OBSERVATORY | SPIRE Simulator Page : 24/ 36

o~}

We have tested to operate the simulator remotely. For that purpose we used Remote Admin

(see http://www.famatech.com/). Other commercially available software should also work. In standard
networks.

2.9.1How to modify application software

Open C++ Builder project file
Open the Function Unit

Locate void Funclnit()

void Funclnit()
{
UCHAR i, j; Function Definition
randomtized); Selected in
! ze(); ComboBox
for(i=0; i<CH; i++) SimFunction
for(j=0; j<MAX_FN; j++) (GUI)
{
Channel No Form1->Set.pEnHS[i][j] = NULL;

Func No

Form1->Seg#pFnLS[i][j] = NULL;

T
il

// Assign function
Form1->Set.pFnHS[0][0] = DO;
Form1->Set.pFnHS[0][1] = DI;
Form1->Set.pFnHS[0][2] = Time F2;

Form1->Set.pFnHS[1][0] = TO;
Form1->Set.pFnHS[1][1] = Time FI;

Form1->Set.pFnHS[2][0] = Specctro_Array F;
Form1->Set.pFnHS[2][1] = Time F2;
Form1->Set.pFnHS[2][2] = Crazy F;

2.9.2 How to define new simulation functions

void DO(BLOCK *pb)

{
USHORT *pd = &pb->Data[0];
USHORT n = pb->Length - MIN_LEN; // Length, Frame ID, TmrTagl, TmrTag2, CRC
SYSTEMTIME tm;

GetSystemTime(&tm);
int index = Form1->ComboBox3->ItemIndex;
*pd++ =Frameld(index);

int i=0;
while(n--) *pd++ = (int)(1000*(1+sin(0.002*M_PI*Form1->mirror_pos)));
*pd++ = tm.wSecond; // TmrTagl

*pd = tm.wMilliseconds; // TmrTag2 ;)
Variable from separate Timer Thread

Event Changing the position (t)

http://www.famatech.com/

STOCKHOLM |HERSCHEL DRCU Instrument | Date : 2003-11-26
H ssue : 1.
OBSERVATORY | SPIRE Simulator Page : 25/ 36

o~}

2.9.3 Current Implementation
/How To Define New Actions Upon Incoming Requests

All set commands are branched in huge switch sentence, defining all set commands
individually.

{case 0: {
/1l Form1->GET_[2][ch][CID]= StrTolnt(A_1025) Updateing of Ack commands

switch(Cmd)
{case 3 :{Forml->start_time_ ms =timeGetTime();Form1->Edit3->Text="Reset_Timer"; }break; //1 ms
resoultioin

Set command number is selected, graphical GUI channel 1 and updated

case 1024: { Form6->C0_1024->Text=IntToStr(Par); break;
case 1025: { Form6->C0_1025->Text=IntToStr(Par);Form1->GET _[0][0][1025]=Par;}break;
case 1026: { Form6->C0_1026->Text=IntToStr(Par);Form1->GET_[0][0][1026]=Par;}break;
case 1027: { Form6->C0_1027->Text=IntToStr(Par);Form1->GET _[0][0][1027]=Par;}break;
case 1028: { Form6->C0_1028->Text=IntToStr(Par);Form1->GET _[0][0][1028]=Par;}break;
case 1029: { Form6->C0_1029->Text=IntToStr(Par); Form1->GET_[0][0]
[1029]=Par;SET_VSSp(1,24,Par);}break; //VSS1

Sometimes additional functions are called

case 1030: { Form6->C0_1030->Text=IntToStr(Par);Form1->GET_[0][0]
[1030]=Par;SET_VSSp(25,24,Par);}break;

case 1031: { Form6->C0_1031->Text=IntToStr(Par);Form1->GET _[0][0]
[1031]=Par;SET_VSSp(49,24,Par);}break;

case 1032: { Form6->C0_1032->Text=IntToStr(Par);Form1->GET _[0][0]
[1032]=Par;SET_VSSp(73,24,Par);}break;

case 1033: { Form6->C0_1033->Text=IntToStr(Par);Form1->GET_[0][0]
[1033]=Par;SET_VSSp(97,24,Par);}break;

case 1034: { Form6->C0_1034->Text=IntToStr(Par);Form1->GET_[0][0]
[1034]=Par;SET_VSSp(121,24,Par);}break;

case 1035: { Form6->C0_1035->Text=IntToStr(Par);Form1->GET _[0][0]
[1035]=Par;SET_VSSp(145,24,Par);}break;

case 1036: { Form6->C0_1036->Text=IntToStr(Par);Form1->GET _[0][0]
[1036]=Par;SET_VSSp(169,24,Par);}break;

case 1037: { Form6->C0_1037->Text=IntToStr(Par);Form1->GET_[0][0]
[1037]=Par;SET_VSSp(193,24,Par);}break;

case 1038: { Form6->C0_1038->Text=IntToStr(Par);Form1->GET_[0][0]
[1038]=Par;SET_VSSp(217,24,Par);}break;

case 1039: { Form6->C0_1039->Text=IntToStr(Par);Form1->GET _[0][0]
[1039]=Par;SET_VSSp(262,24,Par);}break;

case 1040: { Form6->C0_1040->Text=IntToStr(Par);Form1->GET _[0][0]
[1040]=Par;SET_VSSp(241,21,Par);}break; //VSS12

case 1041: { Form6->C0_1041->Text=IntToStr(Par);Form1->GET_[0][0][1041]=Par;}break;

This is the section to add new functions function calls, triggered by set commands
”Request Unit”

STOCKHOLM |HERSCHEL DRCU Instrument | Date : 2003-11-26
H ssue : 1.
OBSERVATORY | SPIRE Simulator Page : 26/ 36

o~}

2.10 Trouble Shooting

Check Windows Task Manager So that only one transmit.exe is running

B windows Task Manager - - |I:I|£|

File Options “Yiew Help

Applications Processes |F'erFu:urmanu:e I

Image: Mame | PIC | _PLU | CPU Tirne | Mem Usage |ﬂ
C5Fs5,BxE 1858 oo 0:00:05 1744 K
SErviCes . exe 236 uin} 00001 S92k
lsass,exe 248 oo 0;00:00 1 148K
Explarer EXE 304 oo oo 1z 3500
sychosk,exe 420 oo 0:00:00 3280k
spoolsy, exe 445 uin} ;0000 S e20k
svchiosk,exe 4a0 oo 0;00:00 5 152K
regsyc.exe Lle oo 0:00:00 856 K
I_SErver.exe SZ28 oo 0:00:00 4 040 K
MaTask, exe S60 oo 0:00;00 3124k
rndrn, exe 7965 oo 0;00:02 2392
kaskmgr exe alz oo 0:00:00 2208k
DirectCD,exe o2 oo 0:00:00 4 228k
CreateCDo0,exe g7e uin} ;0000 2 354k
WEOKPICK.EXE 895 oo 0:00:00 1096 K
FINDFAST .EXE an4 oo 0:00:00 2976k
54, EXE 916 oo 0:00:00 2328k
Transmit.exe 0:00:01 & 164 K
beh.exe 1063 oo 0:00:11 24 252K ™
End Process

Processes: 23 CPU Usage: 5% Mermn Usage: S5908K [2521965k o

3.1 System Tests

Performance

The processor load on transmitter side depends on number of active channels, lengths of blocks
and breaks between the blocks. For the most critical situation i.e. all the channels working, no
breaks between the blocks (if the break between the blocks’ starts is set to time smaller than the
transmission of the block time then there is a break of 2 stop bits i.e. 2us between the blocks)
and long blocks the processor load without the optimisation was equal to 100%. If a block is
long (e.g. 1000 words) than there is no need to calculate new data with a full speed (approx. 1

STOCKHOLM |HERSCHEL DRCU Instrument | Date : 2003-11-26
H ssue : 1.
OBSERVATORY | SPIRE Simulator Page : 27/ 36

o~}

ms per block) as the new block is necessary every 17 ms. The calculating thread goes asleep
for this period and calculates the data only once instead of 17 times.

The function we are using is pretty complicated and the processor is calculating all the time.
However as mentioned above the new data block is required only after the previous one was
transmitted. The optimisation is active and the program only calculates new data before they
are needed for a new transmission.

The maximum processor load we observed for all three channels sending constantly 500 or
1000 words without a break between the blocks (break between the starts set to e.g. 1 ms) was
equal to 40% on 500 MHz Pentium III.

Performance test with the following assumptions

The fastest block rate is 500 Hz (for a very short block, just 7 words). At the same time (but
not synchronised), larger blocks (69 words) are sent at 160 Hz (or so) on another channel
The load was around 6 to 8%. The measurement results are shown on the following two

pages.

STOCKHOLM
OBSERVATORY

HERSCHEL
SPIRE

DRCU Instrument
Simulator

~

Date : 2003-11-26
Issue : 1.0
Page : 28/ 36

3.2 Logic Analyser Displays

| LOGIC ANALYZER

data grd lrgger setup clear redraw goup enable print bus up down port

CLK FREQ. TIME BASE (mzidiv HOR. SHIFT REF. TIME TIME DIFF. TIME TOP BUS

20 kHz +|-=[25 < |>| <[>]45.400 ms <[> [17400ms | [2.000 ms | [not valid |
RESET ZO0M SHIFT STEP TRESHOLD (%) PRE fPOST CLOCK BOTTOM BUS
reaoy | [fiz|s| [s0 || [« L] >~haso] [| 2o | [INT net valid

| A T D '

[o
wfso 10
s o
s]
250]0
s 0
B4sr2___ [0
50]0
s]o

Channel 0 — 330 words every 10 ms, Channel 1 — 10 words every 2 ms, Channel 2 — 50
words every 5 ms Load 7%

STOCKHOLM HERSCHEL DRCU Instrument | Date : 2003-11-26

: 1 : 1.0
OBSERVATORY | SPIRE Simulator Page : 29/ 36

~

#E|LOGIC ANALYZER

data grid tigger zetup clear redraw group enable print bus up down port

CLK FREG. TIME BASE (usidiv HOR. SHIFT REF. TIME TIME DIFF. TIME TOP BUS

[200 kHz +| - [250 < [< | >[7.205 ms < | = [9.210 ms | [2.005 ms | [not valid |
RESET prielel | SHIFT STEP TRESHOLD (% FRE /POST CLOCK BOTToM BUS
reaoy | [z [s0 || [«f | rso] [« | [0 | [INT] [not valid

AG|sF0 |1
wlsp o
N
Ny
s2lsor 0
m o
Ba[s;2___ |O||:
B5[spz___ | O||.
w0

The same settings as above — 10 times faster sampling to show the details. Not all the
frames can be seen as not all the zeroes between the blocks are registered (they are too
short for the sampling frequency set)

STOCKHOLM HERSCHEL DRCU Instrument | Date : 2003-11-26
OBSERVATORY | SPIRE Simulator /e e
4 Simulations
4.1 SCU simulation loops
GUI
Display

Update HK
loop
Normal 1 Hz
“UpdateCry
oDBTimer”

¥

SCU DataBase Get
Commands

CEVT_Temp (K)
CPHP_TEMP (K)

Status Info Heat Switches

Main
Simulation
Loop
Update Rate

1Hzto 80Hz

Housekeeping Block
Fast Channel

Send Rate 80/(1+x) Hz

CH?

x=(0-255

The Main simulation loop refresh rate is set by the Housekeeping block refresh rate- max 80Hz.

If the Housekeeping block transfer is set to less than one Hz the main simulation loop will always have a

minimum value of one Hz to assure that the SCU database will get new values every second.

[The refresh rate of the SCU database (if above 1Hz) should therefore not be higher than the block
transfer rate on the fast channel]

The main simulation loop consists of 3 timer events representing different phases of the simulation.
They are all defined in the main form. A:TimerCryo_normalTimer B:TimerCryo_regenTimer
C: TimerCryo_stop_regenTimer

Normal Operation # Regeneration ## Stop Regenerating Assumed Cycling
For the moment the simulator is assumed to start in normal operational mode)

Mode EVHS SPHS CEVT Temp |CPHP |Heater |Time
HEAT HEAT Temp

Normal Open Closed 0.3 1.7 Off

StartRegen | Closed Open q1.7 <4 40 On Timel

Stop Regen [Closed Closed 1.7 A7 Off Time2

STOCKHOLM HERSCHEL DRCU Instrument i)ate : 21033-11-26
H ssue : 1.

OBSERVATORY | SPIRE Simulator | e 3136

[Normal [Open | Closed 44 0.3 [1.7 [off [Time3 |

Time2-Timel~30 min Time3-Time2~1min

The update HK loop is a timer event. It could be turned on and off in the Settings|DisplayBuffers window
You could also could also change the refresh rate (ms) (default 1000 ms) .

If you want to edit or scroll the SCU database you need to turn off the updating of the HouseKeeping
Loop. (otherwise it will jump back and forth in the database) The normal automatic updating of
Incoming command transfer to the driver is turned off while data is being transferred to the database.
(should only be during that fraction of time) It’s only a minor delay of the housekeeping functions.

House Keeping Block Definition this code extract shows the current implementation.
All values not named fixed have a time dependence. I have put similar temperatures to the same value.

void SCU_normal(BLOCK *pb)

{

/l[/CPHP_T cryo sorption pump

int CPHP_ADU=(int) (StrToFloat(Form1->Edit34->Text)/0.002);
/111 0.3 K Sub Temperture Level

double T = StrToFloat(Form1->Edit33->Text);

int CEVT_ADU=(int) ((1000*T)/
(0.032015060-0.0039288996*T-1.1377826*Power(T,2)+3.3303894*Power(T,3)-1.213793*Power(T,4)));
USHORT *pd = &pb->Data[0];

USHORT n = pb->Length - MIN_LEN; // Length, Frame ID, TmrTagl, TmrTag2, CRC
SYSTEMTIME tm;

GetSystemTime(&tm);

/*2*%/ *pd++=0x20; /// Frame Number 0x20 = 32 dec

div_t x=div((timeGetTime()-Form1->start time ms)*1,65536);

/*3 ind=0 */ *pd++=CPHP_ADU; /I Cryo cooler sortion Pump Heater temperature

/*4 ind=1*/ *pd++=CPHP_ADU; /I Cryo cooler sortion Pump Heat Switch temperature

/*5 ind=2 */ *pd++=CEVT_ADU; /I Sub < 1K Cryo-cooler Evaporator Heat Switch 1.7
/*6 ind=3 */ *pd++=CEVT_ADU; /' Sub Cryo-cooler thermal shunt temperature

/*7 ind=4 */ *pd++=Forml->T_SOB; /I fixed = 1.7 SPIRE Optical Bench temperature

/*8 ind=5*/ *pd++=CEVT_ADU; /I Sub<1k Spectrometer Level 0 det box temperature
/%9 ind=6 */ *pd++=CEVT_ADU; // Sub 1K Photometer Level 0 det box temperature
/10 ind=7 */ *pd++=CEVT_ADU; /I Sub< 1k Optical SUb Bench temperature

/*11 ind=8 */ *pd++=Forml1->T_BAF; /I fixed = FPU input Baffle Temperature

/¥12 ind=9 */ *pd++=Forml1->T_BSMS; /I fixed = BSM/Sob i/f temperature

/¥13 ind=10%*/ *pd++ = Form1->SCal2Temp; /I Spectrometer 2% Calibrator Temperure
/*14 ind=11%*/ *pd++ = Form1->SCal4Temp; /I Spectrometer 4% Temperature

/*15 ind=12%/ *pd++=1234; /I Spectrometer Calibrator flange (STructure) temperature
/¥16 ind=13*/ *pd++ = Forml1->T_FTSS; /I fixed = 1.8K

/¥17 ind=14*/ *pd++=Form1->T_FTSM; /I fixed = 1.8K

/¥18 ind=15*%/ *pd++ = Form1->T_BSMM; /I fixed = 1.8K

/*19 ind=16*/ *pd++=CEVT_ADU; /I Cryo cooler evaporator temperature

/*20 ind=17*/ *pd++ = Form1->PhCalCur; /I Bias current of spectrometer calibrator 2%

/*21 ind=18%*/ *pd++ = Form1->PhCalVolt; /I Voltage across Photometer calibrator

/*22 ind=19%*/ *pd++ = Form1->SCal2Cur; /I Bias current of spectrometer calibrator 2%

/*23 ind=20%*/ *pd++ = Form1->SCal2Volt; /I Voltage across spectrometer calibrator 2%

/*24 ind=21%/ *pd++ = Form1->SCal4Cur; /I Bias current of spectrometer calibrator 4%

/*25 ind=22%*/ *pd++ = Form1->SCal4Volt; /I Voltage across spectrometer calibrator 4%

STOCKHOLM |HERSCHEL DRCU Instrument | Date : 2013-11-26
H ssue : 1.
OBSERVATORY | SPIRE Simulator Page : 32/ 36

~

/*26 ind=23*/ *pd++ = Form1->SPHeaterVolt; // Heater calculated =(int)(Par*7216/1800);;

/*27 ind=24 */ *pd++ = 0; // SCU Staus word ????2??

[*28%/ *pd++ = x.quot; // Timer 1 For the moment ms since computer was turned on
MSB+LSB

[%29%/ *pd++ = x.rem; /I Timer 2

/*30 CHECKSUM */

H

Current Implementation of the HK loop. (database update loop) Corresponding Get commands are up-
dated CID_DEC in the SCU database.

void __fastcall TForm1::UpdateCryoDBTimer(TObject *Sender)

{
TLocateOptions Opts;

Form2->edit_ mode_scu=true; //close on post for update of driver db
T T

int ADU_CPHPT =(int)(StrToFloat(Form1->Edit34->Text)/0.002)*Form1->TempON_OFF;

/lint ADU_CEVT= (int)(StrToFloat(Form1->Edit33->Text)/0.002)*Form1->SUBK_ON_OFF;

double T = StrToFloat(Form1->Edit33->Text);

int ADU_CEVT=(int)(Form1->SUBK_ON_OFF*(1000*T)/
(0.032015060-0.0039288996*T-1.1377826*Power(T,2)+3.3303894*Power(T,3)-1.213793*Power(T,4)));

s
Form2->Table5->Locate('"CID_DEC",2272,0pts);Form2->Table5->Edit();
Form2->Table5->FieldByName("C0_VALUE")->AsInteger=ADU_CPHPT;//
s
Form2->Table5->Locate("CID_DEC",2273,0pts); Form2->Table5->Edit();
Form2->Table5->FieldByName("C0_VALUE")->AsInteger=ADU_CPHPT;//
T
Form2->TableS->Locate("CID_DEC",2274,0pts); /8E2 Cryo cooler evap. heat switch
Form2->TableS->Edit();Form2->Table5->FieldByName(""C0_VALUE")->AsInteger=ADU_CEVT;//
/Il Calibrators Voltage and Temperatures ////////////////
Form2->TableS->Locate("CID_DEC",2275,0pts); Form2->Table5->Edit();
Form2->Table5->FieldByName("C0_VALUE")->AsInteger=ADU_CEVT;//
T
Form2->TableS->Locate("CID_DEC",2276,0pts); Form2->Table5->Edit();
Form2->TableS->FieldByName("C0_VALUE")->AsInteger=Form1->T_SOB;//
T
Form2->Table5->Locate('"CID_DEC",2277,0pts);Form2->Table5->Edit();
Form2->TableS->FieldByName("C0_VALUE")->AsInteger=ADU_CEVT;//
T
Form2->Table5->Locate('"CID_DEC",2278,0pts);Form2->Table5->Edit();
Form2->Table5->FieldByName("C0_VALUE")->AsInteger=ADU_CEVT;//
i
Form2->Table5->Locate('"CID_DEC",2279,0pts);Form2->Table5->Edit();
Form2->TableS->FieldByName("C0_VALUE")->AsInteger=ADU_CEVT;//
T
Form2->Table5->Locate('"CID_DEC",2280,0pts);Form2->Table5->Edit();
Form2->Table5->FieldByName("C0_VALUE")->AsInteger=Form1->T_BAF;//
T T
Form2->Table5->Locate("CID_DEC",2281,0pts); Form2->Table5->Edit();
Form2->Table5->FieldByName("C0_VALUE")->AsInteger=Form1->T_BSMS;//
T
Form2->Table5->Locate('"CID_DEC",2282,0pts);Form2->Table5->Edit();

STOCKHOLM HERSCHEL DRCL{ Instrument
OBSERVATORY SPIRE Simulator

Date : 2003-11-26
Issue : 1.0

P| Page : 33 /36

Form2->TableS->FieldByName(" C0_VALUE")->AsInteger= Form1->SCal2Temp ;//

AT
Form2->Table5->Locate('"CID_DEC",2283,0pts);Form2->Table5->Edit();

Form2->TableS->FieldByName("C0_VALUE")->AsInteger=Form1->SCal4Temp;//

T T
Form2->Table5->Locate("CID_DEC",2284,0pts); Form2->Table5->Edit();
Form2->Table5->FieldByName("C0_VALUE")->AsInteger=1234;//
T
Form2->Table5->Locate('"CID_DEC",2285,0pts);Form2->Table5->Edit();
Form2->Table5->FieldByName("C0_VALUE")->AsInteger=Form1->T_FTSS;//
T T
Form2->TableS->Locate("CID_DEC",2286,0pts); Form2->Table5->Edit();
Form2->TableS->FieldByName("C0_VALUE")->AsInteger=Form1->T_FTSM;//
T
Form2->TableS->Locate("CID_DEC",2287,0pts); Form2->Table5->Edit();
Form2->TableS->FieldByName(" C0_VALUE")->AsInteger=Form1->T_BSMM;//
T
Form2->Table5->Locate('"CID_DEC",2288,0pts);Form2->Table5->Edit();
Form2->TableS->FieldByName("C0_VALUE")->AsInteger=ADU_CEVT;//

T T
Form2->Table5->Locate("CID_DEC",2248,0pts); Form2->Table5->Edit();
Form2->TableS->FieldByName("C0_VALUE")->AsInteger= Form1->PhCalCur;//
M T
Form2->Table5->Locate('"CID_DEC",2249,0pts);Form2->Table5->Edit();
Form2->TableS->FieldByName("C0_VALUE")->AsInteger=Form1->PhCalVolt;//
T T
Form2->TableS->Locate("CID_DEC",2250,0pts); Form2->Table5->Edit();
Form2->TableS->FieldByName("C0_VALUE")->AsInteger=Form1->SCal2Cur;//
T T
Form2->TableS->Locate("CID_DEC",2251,0pts); Form2->Table5->Edit();
Form2->TableS->FieldByName("C0_VALUE")->AsInteger=Form1->SCal2Volt;//
T
Form2->Table5->Locate('"CID_DEC",2252,0pts);Form2->Table5->Edit();
Form2->TableS->FieldByName("C0_VALUE")->AsInteger=Form1->SCal4Cur;//
M T
Form2->Table5->Locate('"CID_DEC",2253,0pts);Form2->Table5->Edit();
Form2->Table5->FieldByName("C0_VALUE")->AsInteger=Form1->SCal4Volt;//
Form2->edit_mode_scu=false; /I Driver update DB To Driver
M T
Form2->Table5->Locate('"CID_DEC",2246,0pts);Form2->Table5->Edit();
Form2->TableS->FieldByName("C0_VALUE")->AsInteger=12345 ;//heater
M

	Application software
	Simulation Loops
	Driver Logic
	PCI A2
	1.2.2 Parts & References to drawings
	1.2.3 Fast channels receivers (HSII)
	1.2.4 Slow channels’ transmitters
	1.2.5 Internal registers address decoder
	1.2.6 Interrupt mask
	1.2.7 Clock 20 MHz dividers
	1.2.8 500 us interrupt
	1.2.9 FIFO control signals generation
	1.2.10 FIFO busy signals generation
	Driver start-up
	Development tool: Borland C++ Builder.5.0
	C: Create a directory “C:\LogFiles”
	D. Reboot computer
	2.6.2 Log file Reader

